Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass
نویسندگان
چکیده
Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C:N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol(-1)) on a C3 (Microlaena stipoides) but not a C4 (Cymbopogon refractus) grass species. At ambient CO2 (400 µmol mol(-1)) M. stipoides roots were 44% higher in nitrogen (N) and 7% lower in carbon (C) concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C:N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.
منابع مشابه
Insects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey. and the C4 grass Spartina patens (Ait.) Mobl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections ...
متن کاملResponses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions
C4 plants contribute » 20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We car...
متن کاملCrop Responses to Elevated Carbon Dioxide
Atmospheric carbon dioxide (CO2) concentration has increased from 280 ppm (parts per million, mole fraction basis) in preindustrial times to 370 ppm today. As concentrations of CO2 and other greenhouse gases rise, global temperature is anticipated to increase. Elevated CO2 will improve crop yields due to increased photosynthesis. However, at above-optimum temperatures for reproductive growth pr...
متن کاملC3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated...
متن کاملPhotosynthesis of C3, C3–C4, and C4 grasses at glacial CO2
Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarb...
متن کامل